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Problem 1 [15 marks] 

1.1 Define the Cauchy Principal Value and hence [2] 

Evaluate the following: 

“sina Lad PY: [ aoe 6 

1.1.2 ——- 
Pv. [a (x? + 4)8 a 

Problem 2 [30 marks] 

2.1 Determine the order of the pole of each of the following functions at the indicated point: 

  

  

    

  

2.1.1 = t 2 = 0; 6 
f(z) zing? 6] 

2 

e =1 
2.1.2 f(x) = —j— at 2% = 0; [6] 

z 

sin z e +_] 
2.2 Show that the functions given by f(x) = at z = 0 and g(x) = FT at z = 1 

possess a removable singularity at the indicated point. [9] 

9 1 e 
2.3 For the given functions f(z) = (z* — 1) i and g(x) = eo determine whether they 

zZ- z-% 
possess: [9] 
(i) Removable singularity; 

(ii) Pole(s), or 
(iii) Essential singularity. 
If it is a pole, then determine the order of the pole. 

Problem 3 [25 marks] 

co 

Let S> a;,(z—c)* be a convergent power series and ¢ > 0 such that B.(c) C D(c, R), where D(c, R) 
k=0 

is the disk of convergence of the power series. 

Let f: B.(c) + C be defined by 

= S> ax(z —c)*. 
k=0 

3.1 Prove that f is n-times differentiable for all n € N and that 

f(z) = YM —1)-+-(k—n+1)ay(z — ce)



for alln € N and all x € B,(c). With respect to differentiability what kind of function is f? [15] 

3.2 Show that 

f(c) 
n! 
  =a,, for alln € No. 

What does this mean for the power series? 

3.2 What is the Taylor series of f at c? 

Problem 4 [30 marks] 

4.1 State the Laurent series Theorem for a function of complex variable. 

  
1 

4.2 Find the Laurent series of f(z) = i 
=2 

for 1 < |z|. 

4.3 Let f: C \ {0} — C be defined by 

fet. 
4.3.1 Find the Laurent series of f about zp = 0. 

4.3.2 What kind of singularity is z3 = 0? How does f behave in the vicinity of z9 = 0? 

4.3.3 State the residue Theorem. 

4.3.4 Find 

[ etd¢ 
C,(0) 
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